#############################################
# Step1: screen reasonable AICs  (exclude -2e+10)
# Record those reasonable AICs () within each models

# output 1: report AIC across all dataset in the aspect of model adequacy.  (BM support obs, does PMM also support obs)


# output 2: check consistency between AIC(comprare two AICs) and LRT(p-value) 


#############################################
rm(list = ls())
#load("~/Dropbox/MingHanHsu/fulldataset/DataSets/results/empR1.rda")

load("~/Dropbox/FCU/Teaching/Mentoring/2016Spring-2021Fall_AssociateProfessor/2020Fall/MingHanHsu/fulldataset/DataSets/results/empR1.rda")

# 5 models 
# two AICs in each model
# 14 trees
# few dataset within each tree

AICc<-function(aic=aic,n=n,k=k){
    return( aic+2*k*(k+1)/(n-k-1))
}

AICc(aic=237.2,n=30,k=6)
## [1] 240.8522
BM1.7$AICc.obs
## [1] -168.4176
BM1.7$AICc.constrained
## [1] -2e+10
BM11.1$AICc.obs
## [1] 43.26753
BM11.1$AICc.constrained
## [1] 83.28728
# ifelse(BM2.1$Prob<0.05,1,0)
# 
# log10(BM2.1$Prob)
# log10(EB2.1$Prob)
# log10(PMM2.1$Prob)
# log10(OU2.1$Prob)
# log10(ID2.1$Prob)



### Assessing the consistency on estimating the rates in multiple trait space.

### H_0: rate are the same $sigma_i$ are equals 
### H_a: not all $sigma_i$ are equals 

## by LRT 
## across all datasets --- 

modelset<-c("BM","PMM","OU","EB","ID")
aicout<-array(NA,c(5,14,100))
aic.value.all<-array(NA,c(2,5,14,100))

for(mIndex in 1:length(modelset)){
  #mIndex<-1
  for (dIndex in 1:length(matrixsetfile)){
    #dIndex<-11
    for (tIndex in 1:100){
      # tIndex<-1
#      print(paste(modelset[mIndex],dIndex,".",tIndex,sep=""))
      objtoload<-paste(modelset[mIndex],dIndex,".",tIndex,sep="")
      if(exists(objtoload)){
        getobjtoload<-get(objtoload)
        if( getobjtoload$AICc.obs>-2e+7 && getobjtoload$AICc.constrained>-2e+7){
          aic.value.all[1,mIndex,dIndex,tIndex]<-getobjtoload$AICc.obs
          aic.value.all[2,mIndex,dIndex,tIndex]<-getobjtoload$AICc.constrained
          aicout[mIndex,dIndex,tIndex]<-ifelse(getobjtoload$AICc.constrained< getobjtoload$AICc.obs,1,0)
        }
      }
    }
  }
}

sumtable<-NULL
for(i in 1:5){
  print(table(aicout[i,,]))
  sumtable<-rbind(sumtable,table(aicout[i,,]))
}
## 
##   0   1 
## 153   3 
## 
##   0   1 
##  12 114 
## 
##   0   1 
##  72 130 
## 
##  0  1 
## 77 63 
## 
##   0   1 
## 104   4
sumtable<-t(sumtable)
colnames(sumtable)<-modelset
rownames(sumtable)<-c("obs","con")
sumtable
##      BM PMM  OU EB  ID
## obs 153  12  72 77 104
## con   3 114 130 63   4
library(xtable)
xtable(sumtable)
## % latex table generated in R 4.2.3 by xtable 1.8-4 package
## % Sun Jun 25 09:02:41 2023
## \begin{table}[ht]
## \centering
## \begin{tabular}{rrrrrr}
##   \hline
##  & BM & PMM & OU & EB & ID \\ 
##   \hline
## obs & 153 &  12 &  72 &  77 & 104 \\ 
##   con &   3 & 114 & 130 &  63 &   4 \\ 
##    \hline
## \end{tabular}
## \end{table}
table(aicout[2,,])
## 
##   0   1 
##  12 114
summary(aic.value.all)
##       Min.    1st Qu.     Median       Mean    3rd Qu.       Max.       NA's 
## -285670.11      50.35      72.35   -1035.00     113.15    3575.20      12536
BMaic.value.all.obs<-aic.value.all[1,1,,]# observation 
BMaic.value.all.con<-aic.value.all[2,1,,]# constraint
PMMaic.value.all.obs<-aic.value.all[1,2,,]# observation 
PMMaic.value.all.con<-aic.value.all[2,2,,]# constraint
OUaic.value.all.obs<-aic.value.all[1,3,,]# observation 
OUaic.value.all.con<-aic.value.all[2,3,,]# constraint
EBaic.value.all.obs<-aic.value.all[1,4,,]# observation 
EBaic.value.all.con<-aic.value.all[2,4,,]# constraint
IDaic.value.all.obs<-aic.value.all[1,5,,]# observation 
IDaic.value.all.con<-aic.value.all[2,5,,]# constraint


#BMPMM
aic.obs.bmpmm<-0
aic.obs.pmmbm<-0

aic.con.bmpmm<-0
aic.con.pmmbm<-0

for (i in 1:14){
  for(j in 1:100){
    if(!is.na(BMaic.value.all.obs[i,j]) & !is.na(PMMaic.value.all.obs[i,j]) ){
      if(BMaic.value.all.obs[i,j] < PMMaic.value.all.obs[i,j]){
        aic.obs.bmpmm=aic.obs.bmpmm+1}else{aic.obs.pmmbm=aic.obs.pmmbm+1}
      
      if(BMaic.value.all.con[i,j] < PMMaic.value.all.con[i,j]){
        aic.con.bmpmm=aic.con.bmpmm+1}else{aic.con.pmmbm=aic.con.pmmbm+1}
    }
  }
}


aic.obs.bmpmm
## [1] 41
aic.obs.pmmbm
## [1] 15
aic.obs.bmpmm/(aic.obs.bmpmm+aic.obs.pmmbm)
## [1] 0.7321429
aic.con.bmpmm
## [1] 3
aic.con.pmmbm
## [1] 53
aic.con.bmpmm/(aic.con.bmpmm+aic.con.pmmbm)
## [1] 0.05357143
#BMEB
aic.obs.bmeb<-0
aic.obs.ebbm<-0

aic.con.bmeb<-0
aic.con.ebbm<-0

for (i in 1:14){
  for(j in 1:100){
    if(!is.na(BMaic.value.all.obs[i,j]) & !is.na(EBaic.value.all.obs[i,j]) ){
      if(BMaic.value.all.obs[i,j] < EBaic.value.all.obs[i,j]){
        aic.obs.bmeb=aic.obs.bmeb+1}else{aic.obs.ebbm=aic.obs.ebbm+1}
      
      if(BMaic.value.all.con[i,j] < EBaic.value.all.con[i,j]){
        aic.con.bmeb=aic.con.bmeb+1}else{aic.con.ebbm=aic.con.ebbm+1}
    }
  }
}


aic.obs.bmeb
## [1] 68
aic.obs.ebbm
## [1] 16
aic.obs.bmeb/(aic.obs.bmeb+aic.obs.ebbm)
## [1] 0.8095238
aic.con.bmeb
## [1] 69
aic.con.ebbm
## [1] 15
aic.con.bmeb/(aic.con.bmeb+aic.con.ebbm)
## [1] 0.8214286
#BMOU
aic.obs.bmou<-0
aic.obs.oubm<-0

aic.con.bmou<-0
aic.con.oubm<-0

for (i in 1:14){
  for(j in 1:100){
    if(!is.na(BMaic.value.all.obs[i,j]) & !is.na(OUaic.value.all.obs[i,j]) ){
      if(BMaic.value.all.obs[i,j] < OUaic.value.all.obs[i,j]){
        aic.obs.bmou=aic.obs.bmou+1}else{aic.obs.oubm=aic.obs.oubm+1}
      
      if(BMaic.value.all.con[i,j] < OUaic.value.all.con[i,j]){
        aic.con.bmou=aic.con.bmou+1}else{aic.con.oubm=aic.con.oubm+1}
    }
  }
}


aic.obs.bmou
## [1] 64
aic.obs.oubm
## [1] 38
aic.obs.bmou/(aic.obs.bmou+aic.obs.oubm)
## [1] 0.627451
aic.con.bmou
## [1] 13
aic.con.oubm
## [1] 89
aic.con.bmou/(aic.con.bmou+aic.con.oubm)
## [1] 0.127451
#BMID
aic.obs.bmid<-0
aic.obs.idbm<-0

aic.con.bmid<-0
aic.con.idbm<-0

for (i in 1:14){
  for(j in 1:100){
    if(!is.na(BMaic.value.all.obs[i,j]) & !is.na(IDaic.value.all.obs[i,j]) ){
      if(BMaic.value.all.obs[i,j] < IDaic.value.all.obs[i,j]){
        aic.obs.bmid=aic.obs.bmid+1}else{aic.obs.idbm=aic.obs.idbm+1}
      
      if(BMaic.value.all.con[i,j] < IDaic.value.all.con[i,j]){
        aic.con.bmid=aic.con.bmid+1}else{aic.con.idbm=aic.con.idbm+1}
    }
  }
}


aic.obs.bmid
## [1] 34
aic.obs.idbm
## [1] 67
aic.obs.bmid/(aic.obs.bmid+aic.obs.idbm)
## [1] 0.3366337
aic.con.bmid
## [1] 79
aic.con.idbm
## [1] 22
aic.con.bmid/(aic.con.bmid+aic.con.idbm)
## [1] 0.7821782
#PMMEB
aic.obs.pmmeb<-0
aic.obs.ebpmm<-0

aic.con.pmmeb<-0
aic.con.ebpmm<-0

for (i in 1:14){
  for(j in 1:100){
    if(!is.na(PMMaic.value.all.obs[i,j]) & !is.na(EBaic.value.all.obs[i,j]) ){
      if(PMMaic.value.all.obs[i,j] < EBaic.value.all.obs[i,j]){
        aic.obs.pmmeb=aic.obs.pmmeb+1}else{aic.obs.ebpmm=aic.obs.ebpmm+1}
      
      if(PMMaic.value.all.con[i,j] < EBaic.value.all.con[i,j]){
        aic.con.pmmeb=aic.con.pmmeb+1}else{aic.con.ebpmm=aic.con.ebpmm+1}
    }
  }
}


aic.obs.pmmeb
## [1] 37
aic.obs.ebpmm
## [1] 20
aic.obs.pmmeb/(aic.obs.pmmeb+aic.obs.ebpmm)
## [1] 0.6491228
aic.con.pmmeb
## [1] 43
aic.con.ebpmm
## [1] 14
aic.con.pmmeb/(aic.con.pmmeb+aic.con.ebpmm)
## [1] 0.754386
#PMMOU
aic.obs.pmmou<-0
aic.obs.oupmm<-0

aic.con.pmmou<-0
aic.con.oupmm<-0

for (i in 1:14){
  for(j in 1:100){
    if(!is.na(PMMaic.value.all.obs[i,j]) & !is.na(OUaic.value.all.obs[i,j]) ){
      if(PMMaic.value.all.obs[i,j] < OUaic.value.all.obs[i,j]){
        aic.obs.pmmou=aic.obs.pmmou+1}else{aic.obs.oupmm=aic.obs.oupmm+1}
      
      if(PMMaic.value.all.con[i,j] < OUaic.value.all.con[i,j]){
        aic.con.pmmou=aic.con.pmmou+1}else{aic.con.oupmm=aic.con.oupmm+1}
    }
  }
}


aic.obs.pmmou
## [1] 61
aic.obs.oupmm
## [1] 43
aic.obs.pmmou/(aic.obs.pmmou+aic.obs.oupmm)
## [1] 0.5865385
aic.con.pmmou
## [1] 69
aic.con.oupmm
## [1] 35
aic.con.pmmou/(aic.con.pmmou+aic.con.oupmm)
## [1] 0.6634615
#PMMID
aic.obs.pmmid<-0
aic.obs.idpmm<-0

aic.con.pmmid<-0
aic.con.idpmm<-0

for (i in 1:14){
  for(j in 1:100){
    if(!is.na(PMMaic.value.all.obs[i,j]) & !is.na(IDaic.value.all.obs[i,j]) ){
      if(PMMaic.value.all.obs[i,j] < IDaic.value.all.obs[i,j]){
        aic.obs.pmmid=aic.obs.pmmid+1}else{aic.obs.idpmm=aic.obs.idpmm+1}
      
      if(PMMaic.value.all.con[i,j] < IDaic.value.all.con[i,j]){
        aic.con.pmmid=aic.con.pmmid+1}else{aic.con.idpmm=aic.con.idpmm+1}
    }
  }
}


aic.obs.pmmid
## [1] 8
aic.obs.idpmm
## [1] 34
aic.obs.pmmid/(aic.obs.pmmid+aic.obs.idpmm)
## [1] 0.1904762
aic.con.pmmid
## [1] 40
aic.con.idpmm
## [1] 2
aic.con.pmmid/(aic.con.pmmid+aic.con.idpmm)
## [1] 0.952381
#EBOU
aic.obs.ebou<-0
aic.obs.oueb<-0

aic.con.ebou<-0
aic.con.oueb<-0

for (i in 1:14){
  for(j in 1:100){
    if(!is.na(EBaic.value.all.obs[i,j]) & !is.na(OUaic.value.all.obs[i,j]) ){
      if(EBaic.value.all.obs[i,j] < OUaic.value.all.obs[i,j]){
        aic.obs.ebou=aic.obs.ebou+1}else{aic.obs.oueb=aic.obs.oueb+1}
      
      if(EBaic.value.all.con[i,j] < OUaic.value.all.con[i,j]){
        aic.con.ebou=aic.con.ebou+1}else{aic.con.oueb=aic.con.oueb+1}
    }
  }
}


aic.obs.ebou
## [1] 30
aic.obs.oueb
## [1] 61
aic.obs.ebou/(aic.obs.ebou+aic.obs.oueb)
## [1] 0.3296703
aic.con.ebou
## [1] 30
aic.con.oueb
## [1] 61
aic.con.ebou/(aic.con.ebou+aic.con.oueb)
## [1] 0.3296703
#EBID
aic.obs.ebid<-0
aic.obs.ideb<-0

aic.con.ebid<-0
aic.con.ideb<-0

for (i in 1:14){
  for(j in 1:100){
    if(!is.na(EBaic.value.all.obs[i,j]) & !is.na(IDaic.value.all.obs[i,j]) ){
      if(EBaic.value.all.obs[i,j] < IDaic.value.all.obs[i,j]){
        aic.obs.ebid=aic.obs.ebid+1}else{aic.obs.ideb=aic.obs.ideb+1}
      
      if(EBaic.value.all.con[i,j] < IDaic.value.all.con[i,j]){
        aic.con.ebid=aic.con.ebid+1}else{aic.con.ideb=aic.con.ideb+1}
    }
  }
}


aic.obs.ebid
## [1] 13
aic.obs.ideb
## [1] 50
aic.obs.ebid/(aic.obs.ebid+aic.obs.ideb)
## [1] 0.2063492
aic.con.ebid
## [1] 31
aic.con.ideb
## [1] 32
aic.con.ebid/(aic.con.ebid+aic.con.ideb)
## [1] 0.4920635
#OUID
aic.obs.ouid<-0
aic.obs.idou<-0

aic.con.ouid<-0
aic.con.idou<-0

for (i in 1:14){
  for(j in 1:100){
    if(!is.na(OUaic.value.all.obs[i,j]) & !is.na(IDaic.value.all.obs[i,j]) ){
      if(OUaic.value.all.obs[i,j] < IDaic.value.all.obs[i,j]){
        aic.obs.ouid=aic.obs.ouid+1}else{aic.obs.idou=aic.obs.idou+1}
      
      if(OUaic.value.all.con[i,j] < IDaic.value.all.con[i,j]){
        aic.con.ouid=aic.con.ouid+1}else{aic.con.idou=aic.con.idou+1}
    }
  }
}


aic.obs.ouid
## [1] 30
aic.obs.idou
## [1] 46
aic.obs.ouid/(aic.obs.ouid+aic.obs.idou)
## [1] 0.3947368
aic.con.ouid
## [1] 69
aic.con.idou
## [1] 7
aic.con.ouid/(aic.con.ouid+aic.con.idou)
## [1] 0.9078947
############

models<-c("bm", "pmm", "ou",  "eb",  "id" )
outcount<-array(NA,c(length(models),length(models)))
rownames(outcount)<-colnames(outcount)<-models
for(i in 1:length(models)){
  for(j in 1:length(models)){
    if(i!=j){
      outcount[i,j]<-paste("(", get(paste("aic.con.",models[i],models[j],sep="")),",",
                           get(paste("aic.con.",models[j],models[i],sep="")),")",sep="")
    }
  }
}
outcount
##     bm        pmm       ou        eb        id       
## bm  NA        "(3,53)"  "(13,89)" "(69,15)" "(79,22)"
## pmm "(53,3)"  NA        "(69,35)" "(43,14)" "(40,2)" 
## ou  "(89,13)" "(35,69)" NA        "(61,30)" "(69,7)" 
## eb  "(15,69)" "(14,43)" "(30,61)" NA        "(31,32)"
## id  "(22,79)" "(2,40)"  "(7,69)"  "(32,31)" NA
library(xtable)
xtable(outcount,digits=3)
## % latex table generated in R 4.2.3 by xtable 1.8-4 package
## % Sun Jun 25 09:02:41 2023
## \begin{table}[ht]
## \centering
## \begin{tabular}{rlllll}
##   \hline
##  & bm & pmm & ou & eb & id \\ 
##   \hline
## bm &  & (3,53) & (13,89) & (69,15) & (79,22) \\ 
##   pmm & (53,3) &  & (69,35) & (43,14) & (40,2) \\ 
##   ou & (89,13) & (35,69) &  & (61,30) & (69,7) \\ 
##   eb & (15,69) & (14,43) & (30,61) &  & (31,32) \\ 
##   id & (22,79) & (2,40) & (7,69) & (32,31) &  \\ 
##    \hline
## \end{tabular}
## \end{table}
namesVar<-array(NA,c(10))
ratiotoPlot<-array(NA,c(10))
k=0
for(i in 1:4){
  for(j in (i+1):5){
    k=k+1
    ratiotoPlot[k]<-get(paste("aic.con.",models[i],models[j],sep=""))/(get(paste("aic.con.",models[i],models[j],sep=""))+get(paste("aic.con.",models[j],models[i],sep="")))
    namesVar[k]<-paste(modelset[i],"-",modelset[j],sep="")
    #    print(outcount[i,j])
  }
}

names(ratiotoPlot)<-namesVar
barplot(ratiotoPlot)

library(ggplot2)

df=data.frame(namesVar=namesVar,ratiotoPlot=ratiotoPlot)
ggplot(df,aes(x=namesVar,y=ratiotoPlot,fill=ratiotoPlot))+geom_bar(stat="identity")+ geom_hline(yintercept=0.5, linetype="dashed", color = "red") + xlab("Pair of Models")+ ylab("Ratio")+ggtitle("Compared by AICc: Homogenerous Rate")+
  geom_text(aes(label=round(ratiotoPlot,2)), position=position_dodge(width=0.9), vjust=-0.25)

# Reorder factor levels by ratiotoPlot
df$namesVar = with(df, reorder(namesVar, ratiotoPlot))

# Plot
ggplot(df, aes(x = namesVar, y = ratiotoPlot, fill = ratiotoPlot)) +
  geom_bar(stat = "identity") +
  geom_hline(yintercept = 0.5, linetype = "dashed", color = "red") +
  xlab("Pair of Models") +
  ylab("Ratio") +
  ggtitle("Compared by AICc: Homogeneous Rate") +
  geom_text(aes(label = round(ratiotoPlot, 2)), position = position_dodge(width = 0.9), vjust = -0.25)

Homogeneous Rate

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
# Filter out rows with 'ID' in the namesVar
df <- df %>% 
  filter(!grepl('ID', namesVar)) 

# Reorder factor levels by ratiotoPlot
df$namesVar <- with(df, reorder(namesVar, ratiotoPlot))

# Plot
ggplot(df, aes(x = namesVar, y = ratiotoPlot, fill = ratiotoPlot)) +
  geom_bar(stat = "identity") +
  geom_hline(yintercept = 0.5, linetype = "dashed", color = "red") +
  xlab("Pair of Models") +
  ylab("Ratio") +
  ggtitle("Compared by AICc: Homogeneous Rate") +
  theme(plot.title = element_text(hjust = 0.5)) + # this centers the title
  geom_text(aes(label = round(ratiotoPlot, 2)), position = position_dodge(width = 0.9), vjust = -0.25) + theme_classic()+
  theme(legend.position="none") +
  theme(plot.title = element_text(hjust = 0.5))

Heterogeneous Rate

models<-c("bm", "pmm", "ou",  "eb",  "id" )
outcount<-array(NA,c(length(models),length(models)))
rownames(outcount)<-colnames(outcount)<-models
for(i in 1:length(models)){
  for(j in 1:length(models)){
    if(i!=j){
      outcount[i,j]<-paste("(", get(paste("aic.obs.",models[i],models[j],sep="")),",",
                           get(paste("aic.obs.",models[j],models[i],sep="")),")",sep="")
    }
  }
}
outcount
##     bm        pmm       ou        eb        id       
## bm  NA        "(41,15)" "(64,38)" "(68,16)" "(34,67)"
## pmm "(15,41)" NA        "(61,43)" "(37,20)" "(8,34)" 
## ou  "(38,64)" "(43,61)" NA        "(61,30)" "(30,46)"
## eb  "(16,68)" "(20,37)" "(30,61)" NA        "(13,50)"
## id  "(67,34)" "(34,8)"  "(46,30)" "(50,13)" NA
library(xtable)
xtable(outcount,digits=3)
## % latex table generated in R 4.2.3 by xtable 1.8-4 package
## % Sun Jun 25 09:02:43 2023
## \begin{table}[ht]
## \centering
## \begin{tabular}{rlllll}
##   \hline
##  & bm & pmm & ou & eb & id \\ 
##   \hline
## bm &  & (41,15) & (64,38) & (68,16) & (34,67) \\ 
##   pmm & (15,41) &  & (61,43) & (37,20) & (8,34) \\ 
##   ou & (38,64) & (43,61) &  & (61,30) & (30,46) \\ 
##   eb & (16,68) & (20,37) & (30,61) &  & (13,50) \\ 
##   id & (67,34) & (34,8) & (46,30) & (50,13) &  \\ 
##    \hline
## \end{tabular}
## \end{table}
namesVar<-array(NA,c(10))
ratiotoPlot<-array(NA,c(10))
k=0
for(i in 1:4){
  for(j in (i+1):5){
    k=k+1
    ratiotoPlot[k]<-get(paste("aic.obs.",models[i],models[j],sep=""))/(get(paste("aic.obs.",models[i],models[j],sep=""))+get(paste("aic.obs.",models[j],models[i],sep="")))
    namesVar[k]<-paste(modelset[i],"-",modelset[j],sep="")
    #    print(outcount[i,j])
  }
}

names(ratiotoPlot)<-namesVar
barplot(ratiotoPlot)

library(ggplot2)
df=data.frame(namesVar=namesVar,ratiotoPlot=ratiotoPlot)
ggplot(df,aes(x=namesVar,y=ratiotoPlot,fill=ratiotoPlot))+geom_bar(stat="identity")+ geom_hline(yintercept=0.5, linetype="dashed", color = "red") + xlab("Pair of Models")+ ylab("Ratio")+ggtitle("Compared by AICc: Heterogeneous Rate")+
  geom_text(aes(label=round(ratiotoPlot,2)), position=position_dodge(width=0.9), vjust=-0.25)

# Reorder factor levels by ratiotoPlot
df$namesVar = with(df, reorder(namesVar, ratiotoPlot))

# Plot
ggplot(df, aes(x = namesVar, y = ratiotoPlot, fill = ratiotoPlot)) +
  geom_bar(stat = "identity") +
  geom_hline(yintercept = 0.5, linetype = "dashed", color = "red") +
  xlab("Pair of Models") +
  ylab("Ratio") +
  ggtitle("Compared by AICc: Heterogeneous Rate") +
  geom_text(aes(label = round(ratiotoPlot, 2)), position = position_dodge(width = 0.9), vjust = -0.25)

# Filter out rows with 'ID' in the namesVar
df <- df %>% 
  filter(!grepl('ID', namesVar)) 

# Reorder factor levels by ratiotoPlot
df$namesVar <- with(df, reorder(namesVar, ratiotoPlot))

# Plot
ggplot(df, aes(x = namesVar, y = ratiotoPlot, fill = ratiotoPlot)) +
  geom_bar(stat = "identity") +
  geom_hline(yintercept = 0.5, linetype = "dashed", color = "red") +
  xlab("Pair of Models") +
  ylab("Ratio") +
  ggtitle("Compared by AICc: Heterogeneous Rate") +
  theme(plot.title = element_text(hjust = 0.5)) + # this centers the title
  geom_text(aes(label = round(ratiotoPlot, 2)), position = position_dodge(width = 0.9), vjust = -0.25) + theme_classic()+
  theme(legend.position="none") +
  theme(plot.title = element_text(hjust = 0.5))